
SDDEC21-08: IoT Sensor Project
Client: Mark Easley, Texas Instruments
Faculty Advisor: Daji Qiao

Motivation
Problem:
Caring for plants can take quite a bit of time and commitment.
IoT sensors connected to a website can take the guesswork and memory out of caring
for plants.

Solution:
A smart-plant ecosystem that will read various sensors connected to a common
houseplant and relay the information to a website where users can view their plant’s
status and setup alerts for when sensor values go out of the defined bounds.

Intended Users:
● Hobbyists with an interest in keeping plants alive
● Large-scale greenhouses that want an easy way to monitor their operation

Design Requirements
Functional
● Sensor status visible on front-end

○ Text format
○ Graph format

● Visual indicator on the sensor module of if the sensors are
in range

● Users can add multiple sensor modules
● Users can add up to 8 sensors per sensor module

Non-functional
● If a sensor reading goes out of bounds, a user should get an

email with 5 minutes stating that fact.
● The hardware can run for upwards of a week without user

interaction

Engineering Constraints
● Low-power
● Cost-effective

Operating Environment
● Indoor usage
● Outdoors: waterproofing out of scope

Standards
● Agile development standards
● Javascript coding standards
● Functional programming standards
● Git conventions
● 2-layer PCB

Technologies used
Hardware:
● Custom PCB
● Off-the-shelf analog sensors

Firmware: TI CC3220SF Launchpad
● Programmed in C
● FreeRTOS
● Connects to our AWS IoT endpoint
● Communicates via MQTT

Backend: AWS
● AWS IoT Core
● AWS Lambda
● AWS DynamoDB
● AWS Amplify

Frontend:
● React Native
● Amplify

Testing
Front-end integration testing
● AWS backend and mocked data
● Firmware control loop to frontend display

Backend unit tests:
● Mocked MQTT data makes it to database
● Lambda function tests

Firmware unit tests:
● Test connection to AWS with fake data
● Test reading data from 2 analog sensors without AWS

This testing allowed us to present a final product in line with our functional and
non-functional requirements.

Team Members:
● Walter Gilbert - Frontend
● Mason Gil - Frontend/Backend
● Zach Kauffman - Firmware/Backend
● Thomas Smeed - Hardware
● Daniel Phalen - Hardware

Results
Our project achieved our functional and
non-functional requirements, although our
hardware layout suffered from longer shipping
times, and we were unable to get our final PCB
revision with vital fixes in time. A successful demo
was prepared using a breadboarded version of that
PCB.

Security
● One of the main benefits of AWS was that it

handles our authentication
● Amplify handles making accounts on the website
● AWS IAM handles giving those accounts the

proper access to...
○ Read from our sensor_data database
○ Write to our preferences database

