

Development Standards & Practices Used

Agile Development

Continuous Testing

Summary of Requirements

● Given the sensor module and some basic instructions, a non-technical user should be able
to get the sensor working and begin monitoring their garden/nursery

● The front-end interface needs to have a way to view the battery status of the sensors within
5% accuracy

● The front-end interface needs to keep track of the value of the sensors and report if any
level is above/below the acceptable level, reporting within 1 hour.

● The front-end interface needs to have available settings for different types of plants.
Example: If a user has a garden with 3 plant types, they should be able to set different
sensor levels for each

● The hardware should run for long periods of time (few weeks) with minimal user
interaction.

● The sensor module should be able to monitor light, moisture, temperature and pH, all within
5% accuracy and <5 minute delay.

● Sensor module should have an attached screen which can quickly display status so that the
user doesn’t always need to log onto the website

Applicable Courses from Iowa State University Curriculum

CprE 288

CprE 488

ComS 309

SE 319

EE 201

EE 230

New Skills/Knowledge acquired that was not taught in courses

AWS
Project definition
Leadership skills

1

Table of Contents
1 Introduction 4

Acknowledgement 4

Problem and Project Statement 4

Operational Environment 4

Requirements 5

Intended Users and Uses 5

Assumptions and Limitations 5

Expected End Product and Deliverables 6

Project Plan 6

2.1 Task Decomposition 6

2.2 Risks And Risk Management/Mitigation 7

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 7

2.4 Project Timeline/Schedule 8

2.5 Project Tracking Procedures 8

2.6 Personnel Effort Requirements 9

2.7 Other Resource Requirements 9

2.8 Financial Requirements 9

3 Design 10

3.1 Previous Work And Literature 10

Design Thinking 10

Proposed Design 10

3.4 Technology Considerations 11

3.5 Design Analysis 11

Development Process 12

Design Plan 12

4 Testing 13

Unit Testing 13

Interface Testing 13

2

Acceptance Testing 14

Results 14

5 Implementation 14

6 Closing Material 14

6.1 Conclusion 14

6.2 References 14

6.3 Appendices 15

List of figures/tables/symbols/definitions (This should be the similar to the

project plan)

Figure 1 - Gantt Chart 9

Figure 2 - Personnel Effort Requirements 10

Figure 3 - Preliminary Block Diagram 12

Figure 4 - Sign In Page 14

Figure 5 - Sign Up Page 14

Figure 6 - Home Page 15

Figure 7 - Testing Interface 15

Figures 8-11 - Hardware Prototyping 17-20

3

1 Introduction

1.1 ACKNOWLEDGEMENT

We would like to thank Texas Instruments and Mark Easley for sponsoring this project. Without
their contributions, we would not have the necessary resources to complete this project.

1.2 PROBLEM AND PROJECT STATEMENT

Gardening, farming, or even caring for a houseplant, takes care and time. As life gets busy, people
(especially those new to growing plants) are especially prone to forget to water and care for their
plants, causing them to die. Even professionals like those who run nurseries need to expend a lot of
time and manpower to keep their plants healthy.

IoT sensors can make this easier for both groups. By planting a sensor module along with a plant,
users can take the mental work out of gardening, and let algorithms guide their actions. Rather than
guess if their plant needs watering again, they can log onto the provided website and examine the
plant's water consumption and current supply. If the days are getting longer and sunlight levels are
changing, they can view sunlight charts and see if the plant should be moved somewhere else to get
more/less sunlight.

The goal of our project is to develop an easy-to-use IoT sensor ecosystem to be used in conjunction
with growing and monitoring plant life. The final project will consist of a sensor module that will
have attached sensors for light, fertilizer, and moisture, which will connect to a microcontroller that
will send the data to an AWS server. Users will be able to go on this website and view the status and
relative position of their sensors, as well as generated graphs of each sensor’s value over time.
Recommendations on repositioning (for better light), watering, and re-fertilizing the soil will be
generated off this data. For home gardeners who likely don’t tend to their gardens every day, they
will be able to receive reminders when the moisture sensor detects less moisture than their plant
requires.

Once completed, this project will be a massive boon for farmers and gardeners, both hobbyists and
professionals alike.

1.3 OPERATIONAL ENVIRONMENT

The end product will be exposed to the elements, especially water. High temperatures and rain will
likely be a frequent occurrence where the sensors are positioned. While these sensors are not
expected to be positioned outdoors during the winter and offseason, they will still likely experience
some cold temperatures, especially when used incorrectly and left for longer periods of time than
intended.

4

1.4 REQUIREMENTS

Functional:

● Given the sensor module and some basic instructions, a non-technical user should be able
to get the sensor working and begin monitoring their garden/nursery

● The front-end interface needs to have a way to view the battery status of the sensors within
5% accuracy

● The front-end interface needs to have available settings for different types of plants.
Example: If a user has a garden with 3 plant types, they should be able to set different
sensor levels for each

● Sensor module should have an attached screen which can quickly display status so that the
user doesn’t always need to log onto the website

Non-functional:

● The front-end interface needs to keep track of the value of the sensors and report if any
level is above/below the acceptable level, reporting within 1 hour.

● The hardware should run for long periods of time (few weeks) with minimal user
interaction.

● The sensor module should be able to monitor light, moisture, temperature and pH, all within
5% accuracy and <5 minute delay.

1.5 INTENDED USERS AND USES

Our intended users are all who wish to grow plants and need some help in that process. This group
can be broken down into a few subcategories.

● New to gardening. These users will likely not have large gardens to tend to, and will rely
more on the reminder and recommendation features (when they should water next, how
much, etc), using only a single sensor module.

● Experienced gardeners with larger setups. These people know how to care for plants, but as
they expand their gardens/hydroponics setup, they require a bit more help keeping
everything straight. These users will likely have a few modules, so they need to be able to
view all the data in the cloud and have an easy way to make sense of it. They will likely not
need the recommendations feature as much, but the reminder will still be used.

● Professionals. Nursery businesses or farmers* who have lots of experience, lots of plants,
and lots of sensors. These users have a very clear understanding of what they need to do
and will likely be using the sensors as more of an error detection system, helping them know
if there’s a part of their field that needs extra attention. This group will not be our core
focus.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions: users will have network connection available, users will have access to
electricity/batteries, users will be able to procure the water and nutrients they need for their plants,
maximum registered users will be 10

5

Limitations: we will be unable to test large-scale setups and thus the project will be focused on
houseplants and ordinary garden plants.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

Sensor module

This sensor module goes in the soil with the plant and has interfaces to each of the sensors we will
be using (light, pH, moisture) and sends all that data to the microcontroller. This is what would be
considered our main deliverable. We’ve divided this deliverable into several deadlines. The basic
hardware should be mocked up and prototyped with a breadboard by mid-April. The PCB design
should be designed and ready to go by the end of the spring semester so that it can be purchased
and ready to use in the fall.

Front-end interface

This will be built with React and connect to our AWS backend. It will display current and past sensor
readings, recommendations and other useful information. This will be used by the user to monitor
their sensors and plants. This should be ready by the start of the fall semester, with notable progress
made by the end of the spring semester. Unit testing will be done as development proceeds.

AWS backend

Our microcontroller will stream the data over the network to our AWS backend, which will collect
the sensor data and process it. The backend will store sensor data so that history graphs can be
generated. It will also store user preferences and thresholds for alerts on water/light/nutrient
needs. The backend timeline is similar to the frontend timeline and we expect to develop them at
the same time. This should be ready at the start of the fall semester, with notable progress and
preliminary testing done by the end of the spring semester.

2 Project Plan

2.1 TASK DECOMPOSITION

Core tasks:

● Development of hardware PCB which will connect to our sensors and stream data to a
microcontroller

● Development of a front-end interface with AWS which will take the data provided by the
aforementioned microcontroller, parse and store it, and present it to the user

Integration tasks:

● Integration of the microcontroller to the sensor module
● Integration of the microcontroller to the cloud service

6

2.2 RISKS AND RISK MANAGEMENT/MITIGATION

One potential risk is that the pH/nutrient sensor will be difficult and/or expensive to work with
reliably. Our initial research on the types of sensors available shows that this should be possible
with an NPK (nitrogen, phosphorus, potassium) sensor, although none of us on the team are familiar
and some of the sensors available have spotty reviews (many don’t seem terribly accurate). We
estimate the risk of this occurring to be roughly 0.4. In the event that it does end up being difficult to
use, we can try to find an alternative method of tracking fertilizer.

Another safety concern that we will need to manage is the fact that our electronics will be near
water. This will be a main factor in our design and the risk of any issues occurring with this is very
low.

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Our key milestones will be

● Hardware prototype on the breadboard
● PCB design
● Front end React app
● Backend AWS server
● PCB integrated with sensors
● Software can interact with the sensor module/controls

Our evaluation criteria for this project will include the following

● Ease with which users can sign up and login to the website
● Reliability and speed of sensor updates to front-end
● Functionality provided by the history and recommendation features
● Reliability of the connection between sensor module and AWS
● Accuracy of the sensor data values

7

2.4 PROJECT TIMELINE/SCHEDULE

Figure 1

2.5 PROJECT TRACKING PROCEDURES

Our team plans on using Git, Trello, and Discord to manage our project.

Discord will be our main, and fastest, method of communication. We will post announcements,
ideas, and reminders in our discord server and host our team meetings in the voice room.

Trello will be how we will keep track of our deadlines and tasks. Trello is handy for organization, and
our page helps by having lists for backlog, to do, in progress, under review, and finished tasks. This
keeps everyone on the same page as to what needs to be done, and by when.

All of our work and important documentation will be stored in the group Gitlab repository. As we
develop, we will each have our own branches in that repo and do reviews before merging code into
the master branch. This will ensure our code is working properly and the version control will help
roll back the code if anything goes wrong.

8

2.6 PERSONNEL EFFORT REQUIREMENTS

Hardware prototype on the
breadboard

20 hrs Prototyping should go quickly
once we have the sensors

PCB design 40 hrs Want to go through iterative
development and make sure
the circuit will work correctly
before we purchase them for
use.

React app 60 hrs Frontends can be tricky,
feature creep is real and
Javascript based webdev has a
literacy barrier

AWS server 20 hrs Should be easy to crank out in
a day, but we will certainly find
ourselves researching and
debugging unforeseen
problems.

PCB integration with sensors 60 hrs We will need to do a lot of
testing on this integration to
make sure everything is
working correctly.

Software/hardware
interaction

60 hrs Lots of interface testing and
moving parts. A large amount
of time will be spent
communicating hardware and
software
requirements/limitations.

Figure 2

2.7 OTHER RESOURCE REQUIREMENTS

AWS accounts and credentials

CAD software for PCB design

2.8 FINANCIAL REQUIREMENTS

We will need to purchase our sensors and microcontroller, as well as order our PCB once designed.
The total price for this should fall under $100.
The AWS free tier should suffice for our initial implementation.

9

3 Design

3.1 PREVIOUS WORK AND LITERATURE

digiPlant[1] is the most notable result that will pop up if you start looking for other IoT plant
sensors. This project is developed by Microsoft and is primarily focused on teaching the process of
IoT, making it pretty simple but effective. It can integrate with Twitter and tweet out the status,
which is a handy feature. Outside of that, there aren’t many ways to monitor the plant’s status
remotely, and Twitter as your main remote monitoring mechanism doesn’t provide all the
information we would like to provide with our solution. [2]

There are many solutions out there similar to digiPlant. Focused on hobbyists, these guides help
users set up their own IoT solutions, but are not very user friendly. They only support one or two
sensor nodes and require lots of knowledge on the part of the user. Our solution aims to be much
more approachable.

Another commercial product on the market is the WANFEI Plant Monitor [3]. This is a sensor node
with light, temperature, humidity and nutrient sensors and a bluetooth capability. It’s marketed as
being easy to use, but the bluetooth connection only lets users monitor when they are right there
with their plants. Our solution will be accessible from anywhere and will support multiple sensor
nodes.

3.2 DESIGN THINKING

Our project was presented to us relatively open-ended. Thus, most of the first few weeks of the
semester were very much focused on defining the project. One of the first aspects of the design that
was defined was “smart home”. It was clear from the start of the project that we wanted to focus our
sensor use on the home and making people’s lives easier. Here we explored a few different ideas:

● Smart thermostat system with temperature sensors in every room and an app that let you
see and control the temperature of each room

● Hydroponics vertical farming system with moisture, temperature, light sensors
● Pandemic focused biometrics sensors that would let companies track the locations and

temperatures of employees in their building for early phase transitioning back to the office

The next aspect that was defined was “plant growth”. During brainstorming we had discovered
hydroponics setups and that lined up nicely with the smart home focus. By focusing on residential
agriculture, we make it easier for people to participate in the very therapeutic act of gardening in
their own home.

3.3 PROPOSED DESIGN

Proposed hardware design:

● PCB daughter board for a TI Launchpad or Raspberry Pi which will have ports for several
sensors

○ Since the board will have the capability to support multiple sensors, we will be able
to use one board that will monitor all of light, moisture, temperature, and pH.

● Enclosure for board with sensors exposed so that they can be placed while treating the
daughter board as a black box

10

○ Enclosing the board in a box with only sensors exposed may help some consumers
be less confused about the setup process since they will only have to worry about
the sensors and not the board itself.

● Launchpad/Raspberry Pi will stream data to the AWS server
○ Using the AWS server will be our method of having the hardware report any

imbalances in the monitored levels to the user(s) as well as allowing the user to
check the levels at any time from any capable device.

● LED panel which will get sent data from the server and display status
○ Receiving data from AWS, the TI launchpad will display some of the information to

an LCD that is close to the system. This will allow the user to view the information
without having to access the application as well as the battery level.

Proposed software design:

● AWS backend will receive data from the microcontroller
○ Using the AWS server will be our method of having the hardware report any

imbalances in the monitored levels to the user(s) as well as allowing the user to
check the levels at any time from any capable device.

● React app will take the data from the backend and generate sensor graphs for history of
sensor values

○ This will allow for the user to check the history and trends of the sensors in case
there is a problem with the monitored values.

● React app will generate alerts when sensor values drop below a certain threshold
○ The user will be sent a notification from the react app that the plant(s) is/are low on

water, not enough light, or other issues. This will allow the user to make sure that
their plant(s) is/are staying alive.

● Data gets sent to status LED panel
○ Receiving data from AWS, the TI launchpad will display some of the information to

an LCD that is close to the system. This will allow the user to view the information
without having to access the application as well as the battery level.

This design satisfies our requirements because it allows us to design an easy to use plant sensor
module that lets users view their plant status from the cloud.

3.4 TECHNOLOGY CONSIDERATIONS

React: Slow but easy to build user friendly apps on the web.

AWS: Easy to build IoT applications on, free to use for us. Powerful IoT tools and its IAM and
Cognito offerings make it easy to allow users to make secure accounts and assign them the right
permissions.

Custom PCB: Nothing extraneous, might not be as optimized as an off-the-shelf solution

3.5 DESIGN ANALYSIS

The project is not yet far enough in the development process to assess success/failure qualifications
on a large scale. We can, however, speak to the success/failure of what we’ve done so far.

The components of our software design so far have been successful, which has mostly consisted of
getting an AWS backend connected with a frontend as a skeleton from which we can build the
project specifics. We have been able to deploy an Amplify app with AWS and mock MQTT data to
display on the front-end. This software skeleton we’ve designed uses AWS Cognito and lets users
sign up, sign in, and gives them the proper permissions to view our AWS topics. See Appendix for
some more information on what work has been done on the software side.

11

Additionally, we’ve been able to get real sensor data up to AWS via a Raspberry Pi gateway talking
to a TI SensorTag (over bluetooth). This is good for prototyping, although as the hardware team
advances, we might need to develop a different interface for the devices talking to the Raspberry Pi.
The sensors exposed via services on the SensorTag are not what we will end up using, so this is a
temporary solution.

The parts (as of revision 3 of this document) have all been delivered but basic prototyping is still
going on. This, however, qualifies as a success based on the timeline we have proposed and
discussed with our client and advisor.

What we’ve designed so far has presented us with an effective and clear framework to continue to
build our functionality off of. Potential modifications will certainly be necessary in the device->AWS
interface. We also want to upgrade our frontend, since everything we’ve designed there so far has
been for a proof-of-concept.

3.6 DEVELOPMENT PROCESS

We are going to use an Agile development approach because it encourages continuous
improvement and evaluation. We’ve used Agile approaches in other courses and internships and
prefer using it in practice to other development processes.

3.7 DESIGN PLAN

Preliminary block diagram

Figure 3

12

4 Testing

4.1 UNIT TESTING

AWS server: Building api test scripts where the AWS server’s endpoints are called and expected to
send back the correct data.

React Front end: The React app will be tested by rigorously trying to break the user interface and
writing a small amount of tests for the little amount of states/internal logic the app will hold.

Custom daughter board: This will be mocked up on a breadboard that is connected to the
microcontroller, be it the Ti Launchpad or a raspberry pi. The role of this PCB is to connect the GPIO
of the microcontroller to the sensors. We will model the breadboard in KiCad and use the test tools
that the software provides to make sure that the layout works. When the final PCB design is done,
we have it printed and tested to make sure that there are no flaws.

Microcontroller: We will make sure that the microcontroller can read out the proper information
from the GPIO ports, since this is what is mainly going to be used.

Sensors: We will have to calibrate the sensors, like the pH or moisture, to make sure that they are
working properly.

Hardware sensor module will be tested in isolation. It will be tested in isolation to ensure that the
proper sensor values are being taken from the sensors and outputted together to the
microcontroller.

Backend will be tested in isolation to ensure that, given fake data in lieu of the sensor module, it will
correctly read and process it to present to the frontend.

Similarly, the frontend will be tested to ensure that it displays data correctly.

4.2 INTERFACE TESTING

Interface testing would involve the intercommunication of the microcontroller with the sensor to
the React Front end displaying the correct values for each sensor like moisture value. This will be
done through rigorous testing by having different controls, like high moist to very dry environment.

Communication from the microcontroller with plant interfacing components like water pump and
lights, will be tested outside the system. This will allow us to set values for the flow rate of the water
pump or brightness of the lights.

Frontend/backend interface will be tested to ensure that data from the backend is correctly
displayed by the frontend and that no errors occur as data moves through the pipeline.

Hardware/software interface will be tested to observer sensor values correctly read by the sensor
module and displayed to the user via the React app.

13

4.3 ACCEPTANCE TESTING

We will demonstrate that the design requirements are being met in section 1.4 by using our project
setup on testing setups and using it like a customer would as we are developing it as well as getting
outside opinions on the interface. We will be able to notice the areas where the product isn’t living
up to expectations as we are using it. Our customer will be involved in this acceptance testing
during our biweekly meetings.

4.4 RESULTS

Our first semester of work on the project has been successful, leaving us with a solid software
prototype and a clear framework to continue to build our core functionality off of. Potential
modifications will certainly be necessary in the device->AWS interface. We also want to upgrade
our frontend, since everything was put together in order to get the AWS integration working
correctly. Everything we’ve put together so far is in line with our proposed schedule.

The project is still not far enough along that we don’t have testing substantive results to conclude
success/failure from. From what we have developed on the software side, we have performed some
basic testing on different devices to make sure that users can sign up via our front-end and
accurately see our back-end data, but these are preliminary tests not covered by our main test plan.

5 Implementation

For the next semester, we plan on getting a PCB mock up and printed, integrating the PDB into the
system, AWS Backend, and software monitoring and control integration. We plan on finishing up
hardware prototyping by the end of the spring semester and getting a basic framework setup on the
software side that will let us

Some things will be started, and worked on throughout the summer and continuing through the fall
semester. Towards the end of the fall semester we will be doing our final testing of the project.

6 Closing Material

6.1 CONCLUSION

So far, our project has mostly consisted of requirements gathering, design sessions, and defining our
project. Our project’s idea has transformed from a general “IoT” specification to a specific sensor
application involving plants and a cloud interface. We have developed a solid proof of concept cloud
interface and gotten to work getting real sensor data up to the cloud, while developing a hardware
solution with breadboards. Next semester, we will provide a sensor hardware module and cloud
interface for the client.

6.2 REFERENCES

[1] ms-iot (2016). PlantSensor [source code]
https://github.com/ms-iot/PlantSensor.

14

https://github.com/ms-iot/PlantSensor

[2] W. I. T. M. Nagase, “Plant App,” Hackster.io, 27-Dec-2017. [Online]. Available:
https://www.hackster.io/windowsiot/plant-app-1167ed#team. [Accessed:
08-Mar-2021].

[3]”WANFEI Plant Monitor Soil Test Kit Flower Care Soil Tester Smart Plant
Tracker Intelligent Sensor Plants Detector Bluetooth Monitor for Light Moisture
Fertility Temperature Level, for iOS and Android”, Amazon.com. [Online]. Available:
https://www.amazon.com/WANFEI-Monitor-Flowers-Sensor-Moisture/dp/B07ZH
7FQJ7/ref=sr_1_5?dchild=1&keywords=plant+sensor&qid=1618934778&sr=8-5.
[Accessed: 21-Apr-2021]

6.3 APPENDICES

Software Figures

Figure 4: Sign In Page

Figure 5: Sign Up Page

15

https://www.hackster.io/windowsiot/plant-app-1167ed#team
https://www.amazon.com/WANFEI-Monitor-Flowers-Sensor-Moisture/dp/B07ZH7FQJ7/ref=sr_1_5?dchild=1&keywords=plant+sensor&qid=1618934778&sr=8-5
https://www.amazon.com/WANFEI-Monitor-Flowers-Sensor-Moisture/dp/B07ZH7FQJ7/ref=sr_1_5?dchild=1&keywords=plant+sensor&qid=1618934778&sr=8-5

Figure 6: Home Page

Figure 7: AWS’s MQTT Test interface which is publishing the data displayed in Figure 6

16

Figure 8: TI Launchpad wired to breadboard that leads to sensors

Figure 9: Sensors that are connected to the breadboard

17

Figure 10: Resistive sensor not detecting moisture

18

Figure 11: Resistive moisture sensor detecting moisture

19

